X7ROOT File Manager
Current Path:
/opt/cloudlinux/venv/lib/python3.11/site-packages/astroid/brain
opt
/
cloudlinux
/
venv
/
lib
/
python3.11
/
site-packages
/
astroid
/
brain
/
ðŸ“
..
📄
__init__.py
(0 B)
ðŸ“
__pycache__
📄
brain_argparse.py
(1.52 KB)
📄
brain_attrs.py
(2.97 KB)
📄
brain_boto3.py
(1012 B)
📄
brain_builtin_inference.py
(33.45 KB)
📄
brain_collections.py
(4.31 KB)
📄
brain_crypt.py
(863 B)
📄
brain_ctypes.py
(2.6 KB)
📄
brain_curses.py
(3.4 KB)
📄
brain_dataclasses.py
(21.57 KB)
📄
brain_dateutil.py
(767 B)
📄
brain_fstrings.py
(2.41 KB)
📄
brain_functools.py
(5.85 KB)
📄
brain_gi.py
(7.37 KB)
📄
brain_hashlib.py
(2.75 KB)
📄
brain_http.py
(10.39 KB)
📄
brain_hypothesis.py
(1.69 KB)
📄
brain_io.py
(1.49 KB)
📄
brain_mechanize.py
(2.58 KB)
📄
brain_multiprocessing.py
(3.14 KB)
📄
brain_namedtuple_enum.py
(22.19 KB)
📄
brain_nose.py
(2.27 KB)
📄
brain_numpy_core_einsumfunc.py
(825 B)
📄
brain_numpy_core_fromnumeric.py
(732 B)
📄
brain_numpy_core_function_base.py
(1.27 KB)
📄
brain_numpy_core_multiarray.py
(4.14 KB)
📄
brain_numpy_core_numeric.py
(1.59 KB)
📄
brain_numpy_core_numerictypes.py
(8.35 KB)
📄
brain_numpy_core_umath.py
(4.78 KB)
📄
brain_numpy_ma.py
(896 B)
📄
brain_numpy_ndarray.py
(8.79 KB)
📄
brain_numpy_random_mtrand.py
(3.36 KB)
📄
brain_numpy_utils.py
(2.58 KB)
📄
brain_pathlib.py
(1.51 KB)
📄
brain_pkg_resources.py
(2.15 KB)
📄
brain_pytest.py
(2.17 KB)
📄
brain_qt.py
(2.74 KB)
📄
brain_random.py
(2.82 KB)
📄
brain_re.py
(2.8 KB)
📄
brain_regex.py
(3.28 KB)
📄
brain_responses.py
(1.82 KB)
📄
brain_scipy_signal.py
(2.22 KB)
📄
brain_signal.py
(3.79 KB)
📄
brain_six.py
(7.42 KB)
📄
brain_sqlalchemy.py
(1009 B)
📄
brain_ssl.py
(6.4 KB)
📄
brain_subprocess.py
(2.93 KB)
📄
brain_threading.py
(870 B)
📄
brain_type.py
(2.42 KB)
📄
brain_typing.py
(13.98 KB)
📄
brain_unittest.py
(1.12 KB)
📄
brain_uuid.py
(667 B)
📄
helpers.py
(908 B)
Editing: brain_random.py
# Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html # For details: https://github.com/PyCQA/astroid/blob/main/LICENSE # Copyright (c) https://github.com/PyCQA/astroid/blob/main/CONTRIBUTORS.txt from __future__ import annotations import random from astroid import helpers from astroid.context import InferenceContext from astroid.exceptions import UseInferenceDefault from astroid.inference_tip import inference_tip from astroid.manager import AstroidManager from astroid.nodes.node_classes import ( Attribute, Call, Const, EvaluatedObject, List, Name, Set, Tuple, ) ACCEPTED_ITERABLES_FOR_SAMPLE = (List, Set, Tuple) def _clone_node_with_lineno(node, parent, lineno): if isinstance(node, EvaluatedObject): node = node.original cls = node.__class__ other_fields = node._other_fields _astroid_fields = node._astroid_fields init_params = {"lineno": lineno, "col_offset": node.col_offset, "parent": parent} postinit_params = {param: getattr(node, param) for param in _astroid_fields} if other_fields: init_params.update({param: getattr(node, param) for param in other_fields}) new_node = cls(**init_params) if hasattr(node, "postinit") and _astroid_fields: new_node.postinit(**postinit_params) return new_node def infer_random_sample(node, context: InferenceContext | None = None): if len(node.args) != 2: raise UseInferenceDefault inferred_length = helpers.safe_infer(node.args[1], context=context) if not isinstance(inferred_length, Const): raise UseInferenceDefault if not isinstance(inferred_length.value, int): raise UseInferenceDefault inferred_sequence = helpers.safe_infer(node.args[0], context=context) if not inferred_sequence: raise UseInferenceDefault if not isinstance(inferred_sequence, ACCEPTED_ITERABLES_FOR_SAMPLE): raise UseInferenceDefault if inferred_length.value > len(inferred_sequence.elts): # In this case, this will raise a ValueError raise UseInferenceDefault try: elts = random.sample(inferred_sequence.elts, inferred_length.value) except ValueError as exc: raise UseInferenceDefault from exc new_node = List(lineno=node.lineno, col_offset=node.col_offset, parent=node.scope()) new_elts = [ _clone_node_with_lineno(elt, parent=new_node, lineno=new_node.lineno) for elt in elts ] new_node.postinit(new_elts) return iter((new_node,)) def _looks_like_random_sample(node) -> bool: func = node.func if isinstance(func, Attribute): return func.attrname == "sample" if isinstance(func, Name): return func.name == "sample" return False AstroidManager().register_transform( Call, inference_tip(infer_random_sample), _looks_like_random_sample )
Upload File
Create Folder