X7ROOT File Manager
Current Path:
/opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/lib/tests
opt
/
cloudlinux
/
venv
/
lib
/
python3.11
/
site-packages
/
numpy
/
lib
/
tests
/
ðŸ“
..
📄
__init__.py
(0 B)
ðŸ“
__pycache__
ðŸ“
data
📄
test__datasource.py
(10.32 KB)
📄
test__iotools.py
(13.42 KB)
📄
test__version.py
(1.95 KB)
📄
test_arraypad.py
(53.54 KB)
📄
test_arraysetops.py
(35.07 KB)
📄
test_arrayterator.py
(1.26 KB)
📄
test_financial_expired.py
(247 B)
📄
test_format.py
(40 KB)
📄
test_function_base.py
(154.03 KB)
📄
test_histograms.py
(31.69 KB)
📄
test_index_tricks.py
(19.78 KB)
📄
test_io.py
(105.36 KB)
📄
test_loadtxt.py
(37.66 KB)
📄
test_mixins.py
(6.87 KB)
📄
test_nanfunctions.py
(46.49 KB)
📄
test_packbits.py
(17.13 KB)
📄
test_polynomial.py
(11.13 KB)
📄
test_recfunctions.py
(42.97 KB)
📄
test_regression.py
(8.06 KB)
📄
test_shape_base.py
(26.19 KB)
📄
test_stride_tricks.py
(22.31 KB)
📄
test_twodim_base.py
(18.4 KB)
📄
test_type_check.py
(14.76 KB)
📄
test_ufunclike.py
(2.91 KB)
📄
test_utils.py
(6.07 KB)
Editing: test_type_check.py
import numpy as np from numpy.testing import ( assert_, assert_equal, assert_array_equal, assert_raises ) from numpy.lib.type_check import ( common_type, mintypecode, isreal, iscomplex, isposinf, isneginf, nan_to_num, isrealobj, iscomplexobj, asfarray, real_if_close ) def assert_all(x): assert_(np.all(x), x) class TestCommonType: def test_basic(self): ai32 = np.array([[1, 2], [3, 4]], dtype=np.int32) af16 = np.array([[1, 2], [3, 4]], dtype=np.float16) af32 = np.array([[1, 2], [3, 4]], dtype=np.float32) af64 = np.array([[1, 2], [3, 4]], dtype=np.float64) acs = np.array([[1+5j, 2+6j], [3+7j, 4+8j]], dtype=np.csingle) acd = np.array([[1+5j, 2+6j], [3+7j, 4+8j]], dtype=np.cdouble) assert_(common_type(ai32) == np.float64) assert_(common_type(af16) == np.float16) assert_(common_type(af32) == np.float32) assert_(common_type(af64) == np.float64) assert_(common_type(acs) == np.csingle) assert_(common_type(acd) == np.cdouble) class TestMintypecode: def test_default_1(self): for itype in '1bcsuwil': assert_equal(mintypecode(itype), 'd') assert_equal(mintypecode('f'), 'f') assert_equal(mintypecode('d'), 'd') assert_equal(mintypecode('F'), 'F') assert_equal(mintypecode('D'), 'D') def test_default_2(self): for itype in '1bcsuwil': assert_equal(mintypecode(itype+'f'), 'f') assert_equal(mintypecode(itype+'d'), 'd') assert_equal(mintypecode(itype+'F'), 'F') assert_equal(mintypecode(itype+'D'), 'D') assert_equal(mintypecode('ff'), 'f') assert_equal(mintypecode('fd'), 'd') assert_equal(mintypecode('fF'), 'F') assert_equal(mintypecode('fD'), 'D') assert_equal(mintypecode('df'), 'd') assert_equal(mintypecode('dd'), 'd') #assert_equal(mintypecode('dF',savespace=1),'F') assert_equal(mintypecode('dF'), 'D') assert_equal(mintypecode('dD'), 'D') assert_equal(mintypecode('Ff'), 'F') #assert_equal(mintypecode('Fd',savespace=1),'F') assert_equal(mintypecode('Fd'), 'D') assert_equal(mintypecode('FF'), 'F') assert_equal(mintypecode('FD'), 'D') assert_equal(mintypecode('Df'), 'D') assert_equal(mintypecode('Dd'), 'D') assert_equal(mintypecode('DF'), 'D') assert_equal(mintypecode('DD'), 'D') def test_default_3(self): assert_equal(mintypecode('fdF'), 'D') #assert_equal(mintypecode('fdF',savespace=1),'F') assert_equal(mintypecode('fdD'), 'D') assert_equal(mintypecode('fFD'), 'D') assert_equal(mintypecode('dFD'), 'D') assert_equal(mintypecode('ifd'), 'd') assert_equal(mintypecode('ifF'), 'F') assert_equal(mintypecode('ifD'), 'D') assert_equal(mintypecode('idF'), 'D') #assert_equal(mintypecode('idF',savespace=1),'F') assert_equal(mintypecode('idD'), 'D') class TestIsscalar: def test_basic(self): assert_(np.isscalar(3)) assert_(not np.isscalar([3])) assert_(not np.isscalar((3,))) assert_(np.isscalar(3j)) assert_(np.isscalar(4.0)) class TestReal: def test_real(self): y = np.random.rand(10,) assert_array_equal(y, np.real(y)) y = np.array(1) out = np.real(y) assert_array_equal(y, out) assert_(isinstance(out, np.ndarray)) y = 1 out = np.real(y) assert_equal(y, out) assert_(not isinstance(out, np.ndarray)) def test_cmplx(self): y = np.random.rand(10,)+1j*np.random.rand(10,) assert_array_equal(y.real, np.real(y)) y = np.array(1 + 1j) out = np.real(y) assert_array_equal(y.real, out) assert_(isinstance(out, np.ndarray)) y = 1 + 1j out = np.real(y) assert_equal(1.0, out) assert_(not isinstance(out, np.ndarray)) class TestImag: def test_real(self): y = np.random.rand(10,) assert_array_equal(0, np.imag(y)) y = np.array(1) out = np.imag(y) assert_array_equal(0, out) assert_(isinstance(out, np.ndarray)) y = 1 out = np.imag(y) assert_equal(0, out) assert_(not isinstance(out, np.ndarray)) def test_cmplx(self): y = np.random.rand(10,)+1j*np.random.rand(10,) assert_array_equal(y.imag, np.imag(y)) y = np.array(1 + 1j) out = np.imag(y) assert_array_equal(y.imag, out) assert_(isinstance(out, np.ndarray)) y = 1 + 1j out = np.imag(y) assert_equal(1.0, out) assert_(not isinstance(out, np.ndarray)) class TestIscomplex: def test_fail(self): z = np.array([-1, 0, 1]) res = iscomplex(z) assert_(not np.any(res, axis=0)) def test_pass(self): z = np.array([-1j, 1, 0]) res = iscomplex(z) assert_array_equal(res, [1, 0, 0]) class TestIsreal: def test_pass(self): z = np.array([-1, 0, 1j]) res = isreal(z) assert_array_equal(res, [1, 1, 0]) def test_fail(self): z = np.array([-1j, 1, 0]) res = isreal(z) assert_array_equal(res, [0, 1, 1]) class TestIscomplexobj: def test_basic(self): z = np.array([-1, 0, 1]) assert_(not iscomplexobj(z)) z = np.array([-1j, 0, -1]) assert_(iscomplexobj(z)) def test_scalar(self): assert_(not iscomplexobj(1.0)) assert_(iscomplexobj(1+0j)) def test_list(self): assert_(iscomplexobj([3, 1+0j, True])) assert_(not iscomplexobj([3, 1, True])) def test_duck(self): class DummyComplexArray: @property def dtype(self): return np.dtype(complex) dummy = DummyComplexArray() assert_(iscomplexobj(dummy)) def test_pandas_duck(self): # This tests a custom np.dtype duck-typed class, such as used by pandas # (pandas.core.dtypes) class PdComplex(np.complex128): pass class PdDtype: name = 'category' names = None type = PdComplex kind = 'c' str = '<c16' base = np.dtype('complex128') class DummyPd: @property def dtype(self): return PdDtype dummy = DummyPd() assert_(iscomplexobj(dummy)) def test_custom_dtype_duck(self): class MyArray(list): @property def dtype(self): return complex a = MyArray([1+0j, 2+0j, 3+0j]) assert_(iscomplexobj(a)) class TestIsrealobj: def test_basic(self): z = np.array([-1, 0, 1]) assert_(isrealobj(z)) z = np.array([-1j, 0, -1]) assert_(not isrealobj(z)) class TestIsnan: def test_goodvalues(self): z = np.array((-1., 0., 1.)) res = np.isnan(z) == 0 assert_all(np.all(res, axis=0)) def test_posinf(self): with np.errstate(divide='ignore'): assert_all(np.isnan(np.array((1.,))/0.) == 0) def test_neginf(self): with np.errstate(divide='ignore'): assert_all(np.isnan(np.array((-1.,))/0.) == 0) def test_ind(self): with np.errstate(divide='ignore', invalid='ignore'): assert_all(np.isnan(np.array((0.,))/0.) == 1) def test_integer(self): assert_all(np.isnan(1) == 0) def test_complex(self): assert_all(np.isnan(1+1j) == 0) def test_complex1(self): with np.errstate(divide='ignore', invalid='ignore'): assert_all(np.isnan(np.array(0+0j)/0.) == 1) class TestIsfinite: # Fixme, wrong place, isfinite now ufunc def test_goodvalues(self): z = np.array((-1., 0., 1.)) res = np.isfinite(z) == 1 assert_all(np.all(res, axis=0)) def test_posinf(self): with np.errstate(divide='ignore', invalid='ignore'): assert_all(np.isfinite(np.array((1.,))/0.) == 0) def test_neginf(self): with np.errstate(divide='ignore', invalid='ignore'): assert_all(np.isfinite(np.array((-1.,))/0.) == 0) def test_ind(self): with np.errstate(divide='ignore', invalid='ignore'): assert_all(np.isfinite(np.array((0.,))/0.) == 0) def test_integer(self): assert_all(np.isfinite(1) == 1) def test_complex(self): assert_all(np.isfinite(1+1j) == 1) def test_complex1(self): with np.errstate(divide='ignore', invalid='ignore'): assert_all(np.isfinite(np.array(1+1j)/0.) == 0) class TestIsinf: # Fixme, wrong place, isinf now ufunc def test_goodvalues(self): z = np.array((-1., 0., 1.)) res = np.isinf(z) == 0 assert_all(np.all(res, axis=0)) def test_posinf(self): with np.errstate(divide='ignore', invalid='ignore'): assert_all(np.isinf(np.array((1.,))/0.) == 1) def test_posinf_scalar(self): with np.errstate(divide='ignore', invalid='ignore'): assert_all(np.isinf(np.array(1.,)/0.) == 1) def test_neginf(self): with np.errstate(divide='ignore', invalid='ignore'): assert_all(np.isinf(np.array((-1.,))/0.) == 1) def test_neginf_scalar(self): with np.errstate(divide='ignore', invalid='ignore'): assert_all(np.isinf(np.array(-1.)/0.) == 1) def test_ind(self): with np.errstate(divide='ignore', invalid='ignore'): assert_all(np.isinf(np.array((0.,))/0.) == 0) class TestIsposinf: def test_generic(self): with np.errstate(divide='ignore', invalid='ignore'): vals = isposinf(np.array((-1., 0, 1))/0.) assert_(vals[0] == 0) assert_(vals[1] == 0) assert_(vals[2] == 1) class TestIsneginf: def test_generic(self): with np.errstate(divide='ignore', invalid='ignore'): vals = isneginf(np.array((-1., 0, 1))/0.) assert_(vals[0] == 1) assert_(vals[1] == 0) assert_(vals[2] == 0) class TestNanToNum: def test_generic(self): with np.errstate(divide='ignore', invalid='ignore'): vals = nan_to_num(np.array((-1., 0, 1))/0.) assert_all(vals[0] < -1e10) and assert_all(np.isfinite(vals[0])) assert_(vals[1] == 0) assert_all(vals[2] > 1e10) and assert_all(np.isfinite(vals[2])) assert_equal(type(vals), np.ndarray) # perform the same tests but with nan, posinf and neginf keywords with np.errstate(divide='ignore', invalid='ignore'): vals = nan_to_num(np.array((-1., 0, 1))/0., nan=10, posinf=20, neginf=30) assert_equal(vals, [30, 10, 20]) assert_all(np.isfinite(vals[[0, 2]])) assert_equal(type(vals), np.ndarray) # perform the same test but in-place with np.errstate(divide='ignore', invalid='ignore'): vals = np.array((-1., 0, 1))/0. result = nan_to_num(vals, copy=False) assert_(result is vals) assert_all(vals[0] < -1e10) and assert_all(np.isfinite(vals[0])) assert_(vals[1] == 0) assert_all(vals[2] > 1e10) and assert_all(np.isfinite(vals[2])) assert_equal(type(vals), np.ndarray) # perform the same test but in-place with np.errstate(divide='ignore', invalid='ignore'): vals = np.array((-1., 0, 1))/0. result = nan_to_num(vals, copy=False, nan=10, posinf=20, neginf=30) assert_(result is vals) assert_equal(vals, [30, 10, 20]) assert_all(np.isfinite(vals[[0, 2]])) assert_equal(type(vals), np.ndarray) def test_array(self): vals = nan_to_num([1]) assert_array_equal(vals, np.array([1], int)) assert_equal(type(vals), np.ndarray) vals = nan_to_num([1], nan=10, posinf=20, neginf=30) assert_array_equal(vals, np.array([1], int)) assert_equal(type(vals), np.ndarray) def test_integer(self): vals = nan_to_num(1) assert_all(vals == 1) assert_equal(type(vals), np.int_) vals = nan_to_num(1, nan=10, posinf=20, neginf=30) assert_all(vals == 1) assert_equal(type(vals), np.int_) def test_float(self): vals = nan_to_num(1.0) assert_all(vals == 1.0) assert_equal(type(vals), np.float_) vals = nan_to_num(1.1, nan=10, posinf=20, neginf=30) assert_all(vals == 1.1) assert_equal(type(vals), np.float_) def test_complex_good(self): vals = nan_to_num(1+1j) assert_all(vals == 1+1j) assert_equal(type(vals), np.complex_) vals = nan_to_num(1+1j, nan=10, posinf=20, neginf=30) assert_all(vals == 1+1j) assert_equal(type(vals), np.complex_) def test_complex_bad(self): with np.errstate(divide='ignore', invalid='ignore'): v = 1 + 1j v += np.array(0+1.j)/0. vals = nan_to_num(v) # !! This is actually (unexpectedly) zero assert_all(np.isfinite(vals)) assert_equal(type(vals), np.complex_) def test_complex_bad2(self): with np.errstate(divide='ignore', invalid='ignore'): v = 1 + 1j v += np.array(-1+1.j)/0. vals = nan_to_num(v) assert_all(np.isfinite(vals)) assert_equal(type(vals), np.complex_) # Fixme #assert_all(vals.imag > 1e10) and assert_all(np.isfinite(vals)) # !! This is actually (unexpectedly) positive # !! inf. Comment out for now, and see if it # !! changes #assert_all(vals.real < -1e10) and assert_all(np.isfinite(vals)) def test_do_not_rewrite_previous_keyword(self): # This is done to test that when, for instance, nan=np.inf then these # values are not rewritten by posinf keyword to the posinf value. with np.errstate(divide='ignore', invalid='ignore'): vals = nan_to_num(np.array((-1., 0, 1))/0., nan=np.inf, posinf=999) assert_all(np.isfinite(vals[[0, 2]])) assert_all(vals[0] < -1e10) assert_equal(vals[[1, 2]], [np.inf, 999]) assert_equal(type(vals), np.ndarray) class TestRealIfClose: def test_basic(self): a = np.random.rand(10) b = real_if_close(a+1e-15j) assert_all(isrealobj(b)) assert_array_equal(a, b) b = real_if_close(a+1e-7j) assert_all(iscomplexobj(b)) b = real_if_close(a+1e-7j, tol=1e-6) assert_all(isrealobj(b)) class TestArrayConversion: def test_asfarray(self): a = asfarray(np.array([1, 2, 3])) assert_equal(a.__class__, np.ndarray) assert_(np.issubdtype(a.dtype, np.floating)) # previously this would infer dtypes from arrays, unlike every single # other numpy function assert_raises(TypeError, asfarray, np.array([1, 2, 3]), dtype=np.array(1.0))
Upload File
Create Folder